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A Nonclassical Model of a Type 2 Mixture
with Vapor-Liquid, Liquid-Liquid, and
Three-Phase Equilibria

J. C. Rainwater!

A model with nonclassical exponents is developed for phase equilibria of a Type
2 mixture with vapor-liquid equilibrium (VLE) and liquid-liquid equilibrium
(LLE). Starting with a Leung—Griffiths model for a Type 1 mixture with only
VLE, the model adds a Schofield parametric construction to describe LLE and
a three-phase locus. Care is taken to suppress a spurious and artificial phase
boundary. The model is applied to VLE data of carbon dioxide + methane. It is
conjectured that this mixture upon cooling would undergo liquid-liquid separa-
tion, but it freezes before such “virtual LLE” can be observed. Experimental
bubble curves and the LLE structure from a classical equation of state are
accurately modeled.

KEY WORDS: carbon dioxide; critical exponents; liquid-liquid equilibria;
methane; three-phase locus; Type 2 mixture; vapor-liquid equilibria.

1. INTRODUCTION

Van Konynenburg and Scott [ 1] have shown that the phase diagram of a
binary mixture can exhibit one of six types of topological structure. In the
simplest case, Type 1, the only coexisting fluid states are vapor-liquid equi-
libria (VLE). In Type 2, the next simplest, the mixture additionally displays
liquid-liquid equilibria (LLE), with two distinct critical loci, a plait-point
locus for VLE and a consolute-point locus for LLE. The VLE and LLE
surfaces intersect along a three-phase liquid-liquid—vapor (LLV) locus that
terminates in an upper critical end point (UCEP).

Cubic equations of state such as the Peng-Robinson equation [2] can
describe the first five types of phase diagrams, and more complex equations
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can yield the sixth type [ 3]. However, phase boundaries as calculated from
analytic equations of state are always described by (incorrect) classical
critical exponents. For example, if A4p is the liquid—-vapor density difference
of a pure fluid, then within the near-critical region,

dp=C (1)’ (1)

where C, is a constant, and ¢ = (7 — T,)/T,, where T is temperature and 7',
is critical temperature. Similarly, for binary mixture LLE on an isobaric
plane, the composition change Ax between coexisting liquid states goes as

Ax=Cy(—1)" (2)

Critical-region thermodynamics is characterized by two and only two
independent critical exponents, which can be taken to be o (which charac-
terizes the divergence of constant-volume specific heat) and f. The theory
of critical exponents is by now well developed [4]. In this work we use
simple scaling [the single nonanalytic term in Eq. (1)] and effective
exponents (f=0.355, « =0.1) that fit thermodynamic behavior better over
a wider range than theoretical exponents (f = 0.325, « =0.11) but are much
closer to theoretical than to classical exponents (f=0.5, «=0).

The Leung—Griffiths model [ 5], as modified by Moldover, Rainwater,
and co-workers [ 6-8] and with effective exponents, has proven useful for
accurate correlation of VLE surfaces for many Type 1 mixtures [9]. A ver-
sion of the model with a crossover function and theoretical exponents has
been developed [10], but such refinements are not used in the present
work. Similar nonclassical models have been developed for LLE [11-13],
but only on an isobaric plane. More recently, Cheng et al. [ 14] have
modeled nonclassically the Type 5 mixture methane + n-hexane and the
smooth transition from VLE to LLE along the upper branch of the critical
locus, but not the coexisting vapor along the liquid-liquid—vapor three-
phase locus. In this work, we develop a nonclassical model of a Type 2
mixture with VLE and LLE surfaces joined by a three-phase LLV locus, all
of which are described by effective nonclassical critical exponents and with
the proper derivative discontinuities in the vapor-phase boundaries.

2. THE NONCLASSICAL TYPE 2 MODEL

Griffiths and Wheeler [15] have shown that the thermodynamic
surfaces of mixtures can be described in terms of field variables such as
pressure P, temperature 7, chemical potential u,, and functions thereof,
which by definition are continuous across a phase boundary. For binary
mixtures, the thermodynamic surface may be described in terms of one
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(arbitrarily chosen) dependent field variable or “potential” as a function of
three independent field variables. The potential is a continuous function of
the independent fields but has manifolds of discontinuities in derivatives
that represent phase boundaries. Density variables such as p and x, which
by definition differ across phase boundaries, are then partial derivatives of
the potential with respect to the independent fields.

In principle, therefore, all types of mixture phase diagrams can be
described by multidimensional, continuous functions with manifolds of
derivative discontinuities to describe the phase boundaries. The approach
taken here is to construct such functions. Our Type 2 mixture model is
based on the Leung—Griffiths [ 5] model of Type 1 mixtures, which in turn
is based on the Schofield [ 16] model of pure fluids. In the variant of the
Schofield model used by Leung and Griffiths, the potential w= P/RT
(where R is the gas constant) is a function of 7z (defined earlier) and /:

h=In(e"t/RT + Ke*'®T) — H — uy — p9 (3)

H =In(e"1/RT + Ke#3/RT) — 119 (4)

Here the superscript s denotes the value on the coexistence surface,
and K can be a constant or a temperature-dependent function [ 17]; more
general dependences have also been considered [ 10]. The arrows denote
the limit of pure fluid 1 in a binary mixture of fluids 1 and 2. The potential

with a phase boundary is described parametrically in terms of new
variables r and 0 as

W= Wypeg + Oy = Wpeg + Cp, G(1, 0) (5)
G(r, 0)=r*""[ag+ a,0* + a,0*] (6)
t=r(1-5b%0%)/(b*—1) (7
h=C,r*=*=F0(1 — 0%) (8)

~

where w,, is a background term analytic in its field variable arguments,
C,, and C,, are fluid-dependent constants, and «a,, a,, a4, and b are functions
of the critical exponents [ 8 ]. The phase boundary is 2 =0, ¢ <0, the liquid
side is 8 =1, and the vapor side is § = — 1. A thermodynamic analysis [ 5]
shows that the molar density p is

p = (0w/h), 9)

The potential described by Egs. (5)—(8) is continuous everywhere including
the phase boundary, but at that boundary its derivative, Eq. (9), is discon-
tinuous, with liquid density at =1 or as & — 0 from above, and vapor
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density at = —1 or as h— 0 from below. It is straightforward to show
that Eq. (1) is obeyed, with C,=2C,/C,.

Leung and Griffiths generalized the pure-fluid Schofield model to Type
1 binary mixtures by means of the “hidden” or “spectator” variable {, where

C — e,ul/RT/(Ke,uz/RT + elll/RT) (10)

which can be interpreted as a field-variable analog of composition x, a den-
sity variable. In the Leung—Griffiths model, C, and C,, are functions of ,
which is held constant in Eq. (9). The background w,, is analytic in {, ¢,
and h. With wy g accurately describing the changes in p and x across the
phase boundary, sufficient parameters are introduced into the background
O, 50 that actual VLE surfaces can be accurately correlated [9]. In terms
of the independent field variables, the coexistence locus of the more volatile
fluid is { =0, h=0, 1 <0, and that of the less volatile fluid is { =1, =0,
t < 0. The plait-point locus is 0 <{< 1, t=0, h=0 and the VLE surface is
0<({<l1, t<0, h=0.

In a typical Type 2 mixture P-T phase diagram, the three-phase locus
is roughly parallel to, and slightly below, the vapor pressure curve of the
more volatile component, and that locus terminates in an UCEP. The
consolute-point locus usually is nearly independent of pressure, so it rises
from the UCEP vertically.

Figure 1 shows the phase boundaries in three-dimensional P-T-{
space. The LLE surface is approximately a perpendicular plane that is
bounded from above in temperature by the consolute point locus. That
surface cuts into the VLE surface along a three-phase locus, bounded from
above in temperature by the UCEP. Because of the 180° rule as analyzed
by Wheeler [ 18], the presence of LLE distorts the VLE surface. As shown,
along the three-phase locus the VLE surface develops an upward crease
(derivative discontinuity), where the sharpness of the crease (magnitude of
derivative discontinuity) increases with distance from the UCEP according
to the exponent f. To construct the Type 2 model, we first place the UCEP
at h=0, t=t,, {={,, where t,<0 and 0 <{,< 1. A term is then added to
the potential, Eq. (5), to describe LLE:

W = Wieg + WyLE T DLLE (11)
e = CL[G(F, 0) + ®or ] (12)
(=57 (C—Co) =201 —-0°) (13)

f=s7Yt—to) =7(1—b%0%))(b>—1) (14)
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P

Fig. 1. Three-dimensional P-7-{ diagram of the
phase boundaries of a Type 2 mixture. The pure
fluid critical points are labeled CP, and CP,. The
curved VLE surface is intersected by the LLE sur-
face, approximately a vertical plane, along a three-
phase locus that terminates at the UCEP. The VLE
surface has a crease along the three-phase locus, as
shown.

Here w,,,, is an analytic correction term, included so that boundary
conditions are obeyed, and C, s,, and s, are scale factors. The above con-
struct yields a consolute point locus at { ={,, t =1,, h >0, which complies
with the approximation of a pressure-independent locus. The three-phase
locus is h=0, {={,, t<t,, and the LLE surface is >0, {={,, t<t,,
across which x,, the liquid composition, is discontinuous. We note that, for
LLE, 7 and { play the roles for VLE of ¢ and A, respectively, and for LLE,
h (instead of () is the spectator variable. Cy and s, could be made functions
of 1 in Egs. (12) and (14), but in the initial model they are constants, so
that the added LLE terms do not affect the liquid and vapor densities.
Actually, in the final model, an 4-dependent term must be added to w, g,
but this will be introduced and justified later.

Scaling-law models in general for binary mixtures are characterized by
a strong field /1,, a weak field /,, and a hidden or spectator field [19]. The
strong field is conjugate to an order parameter, which for the pure-fluid
vapor-liquid transition is the density. Scaling-law behavior is described by
nonanalytic functions of the strong and weak fields with coefficients
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analytically dependent on the hidden field. In our model, within the VLE
construct £ is the strong field, ¢ is the weak field, and { is the hidden field,
while in the LLE construct these fields are, respectively, ¢, 7, and A.

Due to the complexity of the present problem, we have constructed
this initial model at the level of simple scaling. In revised scaling models
[20, 21] for pure fluids and mixtures, the strong field is # with a small
linear admixture of ¢, and the weak field is ¢ with a small linear admixture
of h. Similar mixing of variables could be introduced for LLE in extensions
of this model, but with resulting mathematical complications.

Anisimov et al. [19] have examined the structure of scaling-law
models for general phase behavior in binary mixtures. The most general
forms for the strong and weak fields are

hy=a, Auy+a, AT+ a5 Au (15)
hzzblAT+b2Aﬂl+b3Aﬂ (16)

where AT=T—T,, Au;=pu; — e, f = — iy, and Au=p —pu..

In the present model ¢ is a dimensionless form of AT, { is a function
of u, and for small x, u; behaves somewhat like 4. Anisimov et al. show
that, for VLE in the limit of small x, a;=5b;=0 and y (or equivalently )
is the hidden variable, while for LLE in the incompressible limit ¢, =5, =0
and u, is the hidden field, in correspondence with our LLE construct in
which 7 is the hidden field.

Anisimov et al. [ 19] also consider a Type 5 binary mixture, where the
critical locus has two branches. The branch starting from the critical point
of the less volatile component begins as a locus of VLE critical points, but
as the temperature is reduced it gradually turns into a locus of LLE critical
points until it reaches a critical end point. They define an angle ¢ as

¢ =tan""(as/a,) (17)

and show that ¢ =0 at the critical point of the less volatile pure fluid but
continuously changes to ¢ =7/2 at the critical end point. Similarly, our
VLE and LLE constructs can be viewed as differing by a rotation of 90°
in field variable space.

It is our objective to describe the phase boundary surface of a Type 2
mixture in full, including the three-phase locus, over an extended critical
region. Cheng et al. [ 14] have applied the formalism of Anisimov et al.
[19] to study the Type 5 mixture methane + n-hexane. They obtain good
agreement with the liquid-liquid phase boundaries near the critical end
point. In P-T-{ space, the full Type 5 boundary surface can be illustrated
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similarly to Fig. 1 for the Type 2 surface, but with a single continuous sur-
face that folds onto itself along a three-phase locus bounded by critical end
points at both ends. Unlike the present work, Cheng et al. do not consider
a mathematical description of the three-phase locus or the vapor phase in
coexistence with the liquid phases at the critical end point.

3. SUPPRESSION OF SPURIOUS PHASE BOUNDARIES

Without further refinement, the model as constructed to this point
describes a discontinuity in x within the vapor part of the phase diagram
h<0, {={,, t<ty,. In other words, it incorrectly includes a completely
spurious and artificial “vapor—vapor equilibrium” within a region that
physically is a completely miscible binary gas mixture.

In the present model, the independent fields { and % are still defined
according to Egs. (3), (4), and (10), and the superscript ¢ in Eq. (4) still
represents the value on the (now creased) VLE surface. Consequently,
surfaces of constant 2> 0 in the liquid region and / <0 in the vapor region
also display such a crease. In the one-phase vapor regime, although «w must
be continuous and differentiable in standard field variables (e.g., T, x;, and u,),
derivatives such as (dw/d{), will have discontinuities at {={, because &
and H possess discontinuous derivatives with respect to the standard field
variables.

Within the Leung—Griffiths model, composition is given by

0w 1 dB 0w
=1—-C=1— —1 — J— c 1 t -
wmt-cma-o () gigio(3),
o0H 1 dB, 0H

(=) = 1 18
(&) iz (5),] e
where B,=1/RT,. For h =0, substitution of p, or p, (where subscripts 7
and v denote liquid and vapor) into Eq. (18) yields x, or x,, respectively.
Also, in previous applications of the Leung—Griffiths model, it has been
assumed that H((, ), or in the modified version [6-9] a closely related

function, H(C, t), can be modeled independently of w({, ¢, h). For the inclu-
sion of LLE, we not only modify w but also H, which is done as follows:

pol1)

Polt) =po+pii+pai?, 1>1

Hye(& 0)=po(0)]7! CLG(F, 0) (20)
)=

H(C 1) = Hyre(l, 1) + Hu(G 1) (21)

pv(CO’ )» t<t0 (19)
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where p,, p;, and p, are chosen so that the value and first two derivatives
of p, are continuous. With this modification, according to Eq. (18), along
a locus of constant 7 <t, on the vapor side of the VLE surface there is no
discontinuity in x,, but there is a discontinuity on the liquid side in x, at
{={,. This discontinuity describes LLE, as desired. By this technique, we
have suppressed “vapor—vapor equilibria” on the phase boundary, which is
our primary interest, but we have not necessarily done so throughout the
one-phase vapor region. We return to this point in Section 5.

4. ADJUSTABLE UCEP AND STRETCHING FUNCTION

In the implementation of the model, while the temperature and
pressure of the UCEP are determined from experiment, the values of ¢, and
(o for the UCEP are in general not a priori known. Thus, it is useful to
construct a correlation method so that the position of the UCEP can be
adjusted as necessary.

We first construct wy ; g from Eqgs. (12)—(14) for the choices ¢, = —0.075,
{o=0.1, and s, = s, = 1. Since the usual range of the modified Leung—Griffiths
model is —0.1 <z<0, this choice of #, is toward the lower end of but
within that range, while the choice of {, is based on the observation that
the three-phase locus is typically close to the vapor pressure curve of the
more volatile component and therefore should be closer to 0 than to 1. We
evaluate G(7, 0) along the loci 7=0.075 and { = —0.1, fit those functions to
polynomials in { and 7, respectively, and then construct a product of those
polynomials in { and 7 that thereby fits G(7, §) along the two loci, and,
finally, choose w,,,, to be the negative of this polynomial. Except for small
fitting errors, wy g is then zero along the plait point locus, =0, and the
coexistence locus of the volatile component, { =0.

We then make a simple linear transformation of the independent
variables with scale factors s, and s,

to=0.075s, (22)
f=(t—to)/s,=7(1—b%*0*)/(b*>*—1) (23)
{o=0.1s, (24)
(=571 (C=Co)=m27*7P0(1 - 07) (25)

This transformation retains the constraint that, within fitting error,
wr1g 18 zero for #=0 on the plait-point locus, =0, and the coexistence
curve of the volatile fluid, { = 0. From the symmetry of the function G(7, 0),
oy g also vanishes along the locus {=0.2s,, but we want it instead to
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vanish along the coexistence curve of the nonvolatile fluid, ie., {=1. In
other words, the LLE construct must be changed from symmetric to asym-
metric, which we accomplish by the variable transformation:

/s =C+afexp[({—{s)/al —exp(—{s/a)} (26)
where « and (g are constants, and change the first equality of Eq. (13) to
=0+ (27)

From Eq. (26), we have
sedl/dl = {1 +exp[({—s)/al} (28)

which has the form of a Fermi-Dirac distribution function. For small a, the
derivative is close to one for { <{¢—a and close to zero for { >{¢+a. In
order for w; ;g to vanish on the coexistence curve of the nonvolatile fluid,
we require that {=0.9 when ( =0.1s;, a constraint that determines (g in
Eq. (26) for a given choice of a. Thus we have introduced a one-parameter
“stretching transformation” that transforms the interval 0 <{ < 2{, into the
interval 0 <{ < 1. Since the LLE construct should distort the VLE phase
boundary near { ={,, but not near { =1 (mixtures rich in the nonvolatile
component), we have found it useful to replace Eq. (21) by

Hyyg(C, Z)=[pb(l)]71 CLG(r, é) Sgdc_/dé, (29)

which leaves the model essentially unchanged near {={, since in that
region s, dC/d{’ ~ 1. If the original Leung-Griffiths thermodynamic poten-
tial (g + @y g) is fitted to the pure-fluid coexistence curves and the plait
point locus, the addition to that potential, wy; g, vanishes along (and thus
retains the model fit to) those three loci while adding the new phase transi-
tion of LLE to the thermodynamic description.

5. VAPOR DENSITY AUGMENTATION

While during the development of this formalism, it was initially hoped
that the LLE part of the potential could be made independent of 4, as in
Eqgs. (12)—(14). Further analysis showed that some A-dependence must be
introduced in a specific and careful manner. The problem is that “vapor—
vapor equilibria” must be suppressed not only on the phase boundary (as
it has in the model as described to this point), but also within the one-
phase vapor region away from the boundary. Let Adw, and 4H, be the
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amounts of discontinuity in dw/0f and 0H/d(, respectively, along the sur-
face { ={,, t <t,. We require, not just for 4 =0, but also for all 4 <0, that

Aw(1, h) = p AH (1, h) (30)

Upon considering a small increment of distance into the one-phase
vapor region (small negative /), we find that

6wLLE> <ap>
— = =H — 1
< oh o PLLE LLE | 5p » (31)

where p;;g 1s the contribution from wy gy to the vapor density p. From the
description to this point, such a contribution is zero. Also, as we increase
the magnitude of negative values of A, and thus move from the phase
boundary into the one-phase vapor region, p must decrease and thus dp/0h
is positive. The model to this point is thus inconsistent in that the left side
of Eq. (31) is zero, and consequently we must introduce some /i-depen-
dence into w; 5. Because of the way it was defined, the variable H cannot
have any A-dependence.

There are constraints that need to be obeyed. The full @ must be a
field variable, continuous in {, ¢, and /4. Since we already have a VLE transi-
tion we may add to the discontinuity in dw/0h for ¢ <0, but there must be
no discontinuity for > 0. We must avoid the introduction of any spurious
phase transitions by means of derivative discontinuities away from the
VLE and LLE surfaces. Finally, we want our modification not to disturb
the fit to the vapor pressure and coexisting density curves of the pure com-
ponents or the fit to the plait-point locus. A modification of Eq. (12) that
accomplishes these objectives is

o g=CLLG(F, 0) + 0cor ] {1 + CychO(—h)(1—{?/0.001) '/ <1 +2lz>}

if <0

wue=0 if >0 (32)

where @(h) is the Heaviside step function. This introduces two additional
parameters, a characteristic reduced temperature ¢, and an amplitude Cyc.
The exponential form ensures that the function and all derivatives are
continuous at the plait-point locus =0, and the { dependence leaves the
thermodynamic potential unchanged on the pure-fluid coexistence curves
{=0and {=1.
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This modification leaves the liquid density unchanged but increases
the vapor density since, as explained above, Cyc must be positive and

prie= Cycorie({o, 1)(1 — 52/0-01)(1 +1/2t,) exp(t,/1) (33)

The increase in vapor density generally leads to an increase in vapor com-
position of the volatile component, and its introduction has led to signifi-
cant improvement in the correlation of our test mixture. Except for the
relation between x and { on the plait-point locus, this completes the
description of our nonclassical Type 2 mixture model.

6. APPLICATION TO CARBON DIOXIDE + METHANE

For an initial candidate system to test our model, we searched for a
binary mixture with extensive VLE data in the critical region and with
LLE limited by a UCEP not far from the plait-point locus. We also sought
a mixture for which classical equations of state are available [22]. Without
that condition, from the experimental literature the best choices appear to
be carbon dioxide + carbon disulfide [ 23] and water + sulfur dioxide [24].
However, carbon disulfide and sulfur dioxide are not included in the
available NIST14 computer package.

As an alternative, we chose the mixture carbon dioxide + methane.
Although this mixture does not exhibit LLE in nature, there is evidence
that, on cooling, it would liquid-liquid separate except that it freezes first.
Figure 2 shows the plait-point locus and VLE data from a number of sources
[25-29] for this mixture. The isotherms from 193.15 to 210.15 K terminate
as the pressure is lowered on a three-phase solid-liquid—vapor locus that
has been measured in detail [30].

Figure 2 also shows an earlier attempt to correlate the VLE data of
this mixture [9]. As earlier noted by Al-Sahhaf et al. [31], the modified
Leung—Griffiths model does not quantitatively describe the phase boundary.
The isotherms at the highest temperatures are described well, and it is in
this region that classical equations of state do not do as well and deviate
noticeably from experiment [32, 33]. However, on the methane-rich side,
the dew-bubble curves are predicted to be much too narrow.

It was this behavior, in stark contrast to the success of the model for
most other similar mixtures, that originally motivated the present study
[9]. Similar discrepancies for carbon dioxide + methane have been found
with a scaling-law model and the extended corresponding states approach
of Kiselev and Rainwater [34]. One problem is that critical-region den-
sities have been measured only at the carbon-dioxide-rich end [25, 357,
and while our choice of critical density locus agrees well with experimental
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Fig. 2. VLE surface of carbon dioxide + methane in P-x space. Experimental
isotherms are from Refs. 25-29 with temperatures in K, as shown. The dotted line
is the critical locus and solid lines are isothermal dew-bubble curves from the
modified Leung—Griffiths model.

coexisting densities, it does show some peculiar behavior at the methane-
rich end, such as an unusual negative excess compressibility factor [34].
However, in the absence of data, we did not try to adjust the critical density
locus in that region.

The partially conjectured phase diagram of carbon dioxide + methane
is shown in Fig. 3. If freezing could be suppressed, our hypothesis is that
the mixture would display a three-phase locus with a UCEP and a critical
locus for LLE (consolute point locus), all of which are labeled “virtual” in
Fig. 3. In Fig. 2, an inflection point can be seen on the bubble curve of
Mraw et al. [28] at 210.15 K, which is a characteristic of phase diagrams
of Type 2 mixtures. As the temperature is lowered, the slope of the curve
at the inflection point decreases until that slope is horizontal at the UCEP,
below which there are tie lines for LLE. This pattern of inflection points is
clear in the Peng—Robinson correlation of carbon dioxide + methane of
Knapp et al. [36].

From the NIST14 program [37], after a warning message for freezing
is suppressed, LLE is found with a UCEP at T =181.95 K, P =2.665 MPa,
and x=0.5. Miller and Luks [38] have studied UCEP locations for the
family of carbon dioxide + n-alkane mixtures above and including n-hep-
tane. For a carbon number of less than seven, the extrapolated UCEP
is below the freezing locus, although Im and Kurata [39] were able to
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Fig. 3. Partially conjectured P-T7 phase diagram for carbon
dioxide + methane (schematic), with vapor-pressure curves, plait-
point locus, and solid-liquid—vapor locus [9]. Our conjecture is
that, if freezing were suppressed, this mixture would show con-
solute-point and three-phase LLV loci as shown.

observe LLE in a supercooled mixture of carbon dioxide + n-hexane. If
the UCEP locus in Fig. 3 of Miller and Luks is extrapolated to a carbon
number of one, a temperature of about 180 K is obtained, consistent with
the prediction of NIST14. This liquid-liquid separation is too far below the
freezing locus to be observable experimentally even by supercooling, but its
presence in the fluid solution of the thermodynamics is expected to distort
the VLE phase boundaries.

The three-phase locus may be mapped with NIST14 for a series of
fixed vapor compositions and by variation of the input pressure. It is found
that the composition of the coexisting liquid changes discontinuously at a
specific pressure, which determines the mole fractions of the two coexisting
liquids. The three-phase locus predictions of NIST14 are shown as gray
circles in Fig. 4; these results obey Eq. (2), but, as expected from a classical
equation of state, f =0.5. The present model, in contrast, yields an effective
scaling-law exponent of = 0.355.

Our objective is to adjust the parameters of our model with LLE so
that, to the extent possible, we describe both the experimental VLE data
and the three-phase locus predictions of NIST14. We also want our
correlation to be consistent with the 180° rule, as described by Wheeler
[18]. As an isotherm crosses the three-phase locus, while the liquid com-
position is discontinuous, the vapor composition is continuous but with a
discontinuous derivative dP/dx, so that there is a sharp corner on the dew
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Fig. 4. VLE surface of carbon dioxide + methane in P-x space. Experimental
isotherms from Refs. 25-29, with temperatures in K, as shown. Solid lines are phase
boundaries of present model. At lower temperatures, the data terminate on a
solid-liquid—vapor locus, below which the model predicts LLE. Gray circles denote
a classical LLE structure as calculated from Ref. 37. Large, filled dark circles are
three-phase LLV points of the model.

curve. Also, according to the 180° rule, as an arrow this corner must point
from the one-phase toward the multiphase region [ 18].

We found, with some disappointment, that the inclusion of the LLE
potential did not significantly increase the calculated widths of the dew-
bubble curves. To reproduce those widths, we followed a procedure used
earlier for the azeotropic mixture ethane + hydrogen sulfide [ 9]. We define
w, as the ratio of theoretical to experimental dew-bubble curve widths
according to the modified Leung—Griffiths model with the critical line con-
dition [17] x=1—{ on the plait-point locus. We then seek to reproduce
the experimental widths by changing from linear the relation between { and
x on that locus. The desired relation {(x;) on that locus, where x, =1 —x,
then satisfies the differential equation:

& dx
(1= xi(1—x))

w(xy) (34)

and, from theoretical considerations [9],

wi(x)=1+x(1—x;)wg(x;) (35)
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Fig. 5. Semilogarithmic plot of wg, determined from Fig. 1, as a
function of x,, and fit to Eq. (37).

where wg(x,) is finite and, in this example, negative. The solution to Eq. (34)
is then

() = Cx, eXp[fgl wg(X}) dx}]
YT =X, + Cxyexp[ [y we(x)) dx']

(36)

where C is a constant of integration.

The function wg(x;), as determined from graphical observation of
Fig. 2, is displayed in the semilogarithmic plot in Fig. 5. The approximately
straight line behavior indicates that

VVE: CW]87CW2x1 (37)

We used the form of Eq. (37), but with subsequent adjustments to the
parameters as determined from Fig. 4 to optimize the fit. Our final choices
are Cy; = —4.0 and Cy,, =4.33. From Eq. (36), the dependence of { on x,
along the plait-point locus is obtained. In place of C, we choose values of
xo=0.1 and {, =0.1 so that {(x,) ={,.

Our final correlation is shown in Fig. 4 with the choices of adjustable
parameters listed in Table 1. The correlation achieves most, but not all, of
our stated goals. The model describes LLE as shown by the large filled
circles in reasonable agreement with the predictions of NIST14, which, we
emphasize, are not actual experimental data. The model dew curves at 182
and 179 K, although differing somewhat from the coexisting vapor com-
position predictions of NIST14, are continuous (no spurious vapor—vapor
equilibrium) with discontinuous derivatives at the three-phase locus, and,
at least for the 182 K isotherm, the direction of discontinuity agrees with
the 180° rule.
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Table 1. Parameters of the Model for Carbon Dioxide + Methane

Parameter Value Purpose

Cy —15 Leung—Griffiths parameter; moves curves left and right
Cx 0.16 Leung-Griffiths parameter; narrows or widens curves
(6 —14 Leung-Griffiths parameter; lets Cy vary with ¢

Cr 2.0 Leung-Griffiths parameter; rotates 7—p curves

Cy 1.5 Leung-Griffiths parameter; lets Cx vary with {
Cwi 4 Amplitude of excess width function
Cwa 433 Decay rate of excess width function

X 0.1 Value of x at which (=,

G 0.1 Value of { at which x; =x,

CL 1.7 Amplitude of LLE construct

S, 1.867 Scaling factor of ¢ for UCEP

e 22 Scaling factor of { for UCEP

a 0.009 Transition range for stretching transformation

Cye 22.0 Amplitude of vapor density augmentation

t, 0.3 Scale factor for 7 in vapor density augmentation

Furthermore, all experimental bubble curves are accurately correlated.
The model dew curves are in at least fair agreement with experiment for
T >240 K but clearly to the left of the experimental points for 203.15
K <T<230 K. Thus our construction does not exactly reproduce the
quantatitave behavior of the thermodynamic potential in the region
between the plait-point and the consolute-point loci, but the overall
qualitative behavior, with theoretical critical exponents, is reproduced.
A difficulty with the present example is that t = —0.14 at the UCEP, whereas
we have traditionally restricted the model to the range —0.1 <7< 0. Thus,
the LLE in the present example is somewhat outside the “near-critical”
regime with respect to VLE.

We appreciate the desirability of minimizing the number of adjustable
parameters, but present techniques for scaling-law models of complicated
mixtures require many parameters. A similar number of parameters was
required to describe VLE of water 4+ sodium chloride even over a small
range of composition [10]. Our starting point, the modified Leung—
Griffiths model, contained six adjustable parameters (in addition to those
required to fit the pure coexistence curves and plait-point locus). The first
five of these, Cy, Cx, C,, Cg, and Cy, are listed in Table I and are
defined in previous work [7, 9]. The sixth, H,, which modified the linear
critical line condition in a simple polynomial manner, is replaced here by
the parameters Cyy, Cws, Xo, and {; in the more complicated relations of
Egs. (36) and (37). The remaining parameters in Table I were defined
earlier in the text. In this work, the parameters were determined by graphical
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and visual methods, and no formal nonlinear optimization techniques with
minimization of an objective function has yet been attempted, although
such methods have been used for the modified Leung—Griffiths model with
only VLE [10, 40]7.

7. CONCLUSIONS

To our knowledge, this work presents the first complete nonclassical
description of the fluid phase boundaries of a Type 2 mixture. Although
this model may seem complex, and some aspects of it are without
fundamental theoretical justification, its advantage is that all phase transi-
tions are described by nonclassical exponents, which may be of more
importance for Type 2 than for Type 1 mixtures. In the LLE experimental
literature, one often sees an ad hoc fit of the data to Eq. (2) with an expo-
nent of one-third, but without any connection to a complete thermo-
dynamic model.

Our initial model has several limitations that in the future should be
corrected for general applicability. The consolute point locus is independent
of pressure in the model, whereas (relatively weak) pressure dependence
has been observed for such loci [41]. Because the LLE construct is inde-
pendent of /2 on the liquid side, the model predicts equal molar densities for
the coexisting liquids, which is not true in general [42]. A thermodynamic
potential with discontinuities in higher derivatives would lead to higher-
order phase transitions, and this must be kept in mind with constructions
such as Eq. (19). Perhaps most importantly, we have suppressed a spurious
“vapor—vapor equilibrium” at the three-phase locus but not necessarily
over all of the one-phase vapor region, and to do so probably will require
some further A-dependence in wy;g. Also, the thermodynamic behavior
around a critical end point has been analyzed in some detail by Fisher
[43, 44], and to the extent possible, the model should comply with Fisher’s
analysis. Nevertheless, this work represents a promising step toward the
solution of a complicated problem and, hopefully, can be refined incremen-
tally as the modified Leung—Griffiths model has been refined in recent years
[9].

We note that a new nomenclature for binary fluid mixtures, to replace
that of Van Konynenburg and Scott [ 1], has recently been proposed [45].
Within that nomenclature, the mixture we have considered would be
classified as 7”] instead of Type 2. In future work, we plan to test the model
on binary mixtures with experimentally observed LLE. The best candidate
mixtures at present appear to be carbon dioxide + carbon disulfide [23],
water + sulfur dioxide [24], and possibly ammonia + isooctane [42].
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